Part Number Hot Search : 
MIC74BQS 14100 E15030 74F82 74F82 90903 3705Z A1SX80
Product Description
Full Text Search
 

To Download AS9C25128M2036L-250PI Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  september 2004 preliminary information copyright ? alliance semiconductor. all rights reserved. ? as9c25256m2036l as9c25128m2036l 2.5v 256/128k x 36 synchronous dual-port sram with 3.3v or 2.5v interface 9/30/04; v.1.3 alliance semiconductor p. 1 of 30 features ? true dual-port memory cells that allow simulta- neous access of the same memory location ? organisation: 262,144/131,072 x 36 [1] ? fully synchronous, independent operation on both ports ? selectable pipeline or flow-through output mode ? fast clock speeds in pi peline output mode: 250 mhz operation (18gbps bandwidth) ? fast clock to data access: 2.8ns for pipeline out- put mode ? asynchronous output enable control ?fast oe access times: 2.8ns ? double cycle deselect (dcd) for pipeline out- put mode ? 18/17 [1] -bit counter with increment, hold and repeat features on each port ? dual chip enables on both ports for easy depth expansion ? interrupt and collision detection features ? 2.5 v power supply for the core ? lvttl compatible, selectable 3.3v or 2.5v power supply fo r i/os, addresses, clock and control signals on each port ? snooze modes for each port for standby operation ? 15ma typical standby current in power down mode ? available in 256-pin ball grid array (bga), 208-pin plastic quad flatpack (pqfp) and 208-pin fine pitch ball grid array (fpbga) ? supports jtag features compliant with ieee 1149.1 selection guide feature -250 -200 -166 -133 units minimum cycle time 4 5 6 7.5 ns maximum pipeline clock frequency 250 200 166 133 mhz maximum pipeline clock access time 2.8 3.4 3.6 4.2 ns maximum flow-through clock frequency 150 133 100 83 mhz maximum flow-through clock access time 6.5 7.5 10 12 ns maximum operating current tbd 350 300 260 ma maximum snooze mode current 18181818ma note: 1. as9c25256m2036l/as9c25128m2036l
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 2 of 30 ? dual port logic block diagram note: 1. address a17 is a nc for as9c25128m2036l register bank q d register bank q d r/w control o/p control o/p control pl/ft 0 1 register bank q d 0 1 pl/ft register bank q d register bank q d mirror register increment logic address decoding interrupt/collision detection logic/registers snooze logic jtag be 3 a -be 0 a true dual port memory array 256/128k x36 address counter a ce0 a ce1 a r/w a oe a pl/ft a rpt a ads a inc a a17 [1] a -a0 a ce0 a ce1 a r/w a pl/ft a int a col a clk a zz a tdi tdo register bank q d register bank q d r/w control o/p control o/p control pl/ft 0 1 register bank q d 0 1 pl/ft register bank q d register bank q d mirror register increment logic address decoding snooze logic be 3 b -be 0 b address counter b ce0 b ce1 b r/w b pl/ft b rpt b ads b inc b a17 [1] b -a0 b ce0 b ce1 b r/w b pl/ft b int b col b clk b zz b tms trst tck dq35 a -dq0 a dq35 b -dq0 b qout a <35:0> qout b <35:0> din b <35:0> din a <35:0> opt b clk b opt a clk a oe b opt a opt b
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 3 of 30 ? general description the as9c25256m2036l/as9c25128m2036l is a high- speed cmos 9/4.5-mbit synchronous du al-port static random access memory device, organized as 262,144/131,072 x 36 bits . it incorporates a selectable flow-thr ough/pipeline output fe ature for user flex ibility. clock- to-data valid time is 2.8ns at 250 mhz for ?pipeline output? mode of operation. each port contains an 18/17 bit linear burst counter on the input address register that can l oop through the whole address sequ ence. after externally loading the counter with the initi al address, it can be incr emented or held for the next cycle. a new address can al so be loaded or the ?previous loaded? address can be re-acc essed (repeated) using counter controls (more descripti on to follow). the registers on control, data, and address inputs provid e minimal setup and hold times. the memory array utilizes dual-port memory cells to allow simu ltaneous access of any address from both ports. a particular port can write to a certain location while another port is reading from the same location, but the validity of re ad data is not guaranteed. ho wever, the reading port is informed about the possibl e collision through its collisi on alert signal. the result of writing to the same loc ation by more than one port at the same time is undefined. the asynchronous output enable input pin allo ws asynchronous disabling of output buffer s at any given time. the byte enable inp uts allow individual byte read/write op erations (refer byte control truth table). an automatic power down feature, controlled by ce 0 and ce1, permits the on-chip circuitry of each port to enter a very low standby power mode. as9c25256m2036l/as9c25128m2036l can support an ope rating voltage of either 3.3v or 2. 5v on either or both ports, which is controlled by the opt pins. the power supply for the core of the de vice (vdd) is at 2.5v. this de vice is available in 256-pin b all grid array (bga), 208-pin fine pitch ball grid array (fpbga) and 208-pi n plastic quad flatpack (pqfp) address counter the as9c25256m2036l/as9c25128m2036l carries an in ternal 18/17 bit address counter for ea ch port which can loop through the enti re memory array. the address counter features are discussed below: load : any required external address ca n be loaded on to the counter. this feature is similar to normal addres s load in conventional memories. increment : the address counter has the capability to internally increment the address value, po tentially covering the entire memory arra y. once the whole address space is completed, the counter will wrap around. the ad dress counter is not initailized on power-up, he nce a known location has to be loaded before increment operation. hold : the value of the counter register can be held for an unlimited numbe r of clock cycles by de-asserting ads , inc, and rpt inputs. repeat : the previously loaded address (l oaded using a valid load operation) can be re-accessed by asserting rpt input. a separate 18/17 bit register called ?mirror register? is us ed to hold the last loaded address.this re gister is not initialized on power-up, hen ce a known location has to be loaded before repeat operation (refer counter control truth table for details).
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 4 of 30 ? ball assignment - 256-ball bga note: 1. address a17 is a nc for as9c25128m2036l 12345678910111213141516 a nc tdi nc a17 [1] a a14 a a11 a a8 a be2 a ce1 a oe a inc a a5 a a2 a a0 a nc nc a b dq18 a nc tdo nc a15 a a12 a a9a be3 a ce0 a r/w a rpt a a4 a a1 a vdd dq17 a nc b c dq18 b dq19 a vss a16 a a13 a a10 a a7 a be1 a be0 a clk a ads a a6 a a3 a opt a dq17 b dq16 a c d dq20 b dq19 b dq20 a pl/ft a vddq a vddq a vddq b vddq b vddq a vddq a vddq b vddq b vdd dq15 b dq15 a dq16 b d e dq21 b dq21 a dq22 a vddq a vdd vdd int a vss vss vss vdd vdd vddq b dq13 a dq14 a dq14 b e f dq23 a dq22 b dq23 b vddq a vdd nc col a vss vss vss vss vdd vddq b dq12 b dq13 b dq12 a f g dq24 b dq24 a dq25 a vddq b vss vss vss vss vss vss vss vss vddq a dq10 a dq11 a dq11 b g h dq26 a dq25 b dq26 b vddq b vss vss vss vss vss vss vss vss vddq a dq9 b dq9 a dq10 b h j dq27 a dq28 b dq27 b vddq a zz b vss vss vss vss vss vss zz a vddq b dq8 b dq7 b dq8 a j k dq29 b dq29 a dq28 a vddq a vss vss vss vss vss vss vss vss vddq b dq6 b dq6 a dq7 a k l dq30 a dq31 b dq30 b vddq b vdd nc col b vss vss vss vss vdd vddq a dq5 a dq4 b dq5 b l m dq32 b dq32 a dq31 a vddq b vdd vdd int b vss vss vss vdd vdd vddq a dq3 b dq3 a dq4 a m n dq33 a dq34 b dq33 b pl/ft b vddq b vddq b vddq a vddq a vddq b vddq b vddq a vddq a vdd dq2 a dq1 b dq2 b n p dq35 b dq34 a tms a16 b a13 b a10 b a7 b be1 b be0 b clk b ads b a6 b a3 b dq0 a dq0 b dq1 a p r dq35 a nc trst nc a15 b a12 b a9 b be3 b ce0 b r/w b rpt b a4 b a1 b opt b nc nc r tnctcknc a17 [1] b a14 b a11 b a8 b be2 b ce1 b oe b inc b a5 b a2 b a0 b nc nc t 12345678910111213141516 as9c25256m2036l/as9c25128m2036l b - 256 top view
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 5 of 30 ? ball assignment - 208-ball fpbga note: 1. address a17 is a nc for as9c25128m2036l 1234567891011121314151617 a dq19 a dq18 a vss tdo col a a16 a a12 a a8 a be1 a vdd clk a inc a a4 a a0 a opt a dq17 a vss a b dq20 b vss dq18 b tdi a17 [1] a a13 a a9 a be2 a ce0 a vss ads a a5 a a1 a nc vddq b dq16 a dq15 b b c vddq a dq19 b vddq b pl/ft a int a a14 a a10 a be3 a ce1 a vss r/w a a6 a a2 a vdd dq16 b dq15 a vss c d dq22 a vss dq21 a dq20 a a15 a a11 a a7 a be0 a vdd oe a rpt a a3 a vdd dq17 b vddq a dq14 a dq14 b d e dq23 a dq22 b vddq b dq21 b dq12 a dq13 b vss dq13 a e f vddq a dq23 b dq24 a vss vss dq12 b dq11 a vddq b f g dq26 a vss dq25 a dq24 b dq9 a vddq a dq10 a dq11 b g h vdd dq26 b vddq b dq25 b vdd dq9 b vss dq10 b h j vddq a vdd vss zz b zz a vdd vss vddq b j k dq28 b vss dq27 b vss dq7 b vddq a dq8 b vss k l dq29 b dq28 a vddq b dq27 a dq6 b dq7 a vss dq8 a l m vddq a dq29 a dq30 b vss vss dq6 a dq5 b vddq b m n dq31 a vss dq31 b dq30 a dq3 b vddq a dq4 b dq5 a n p dq32 b dq32 a vddq b dq35 b trst a16 b a12 b a8 b be1 b vdd clk b inc b a4 b dq2 a dq3 a vss dq4 a p r vss dq33 a dq34 b tck a17 [1] b a13 b a9 b be2 b ce0 b vss ads b a5 b a1 b nc vddq a dq1 b vddq b r t dq33 b dq34 a vddq a tms int b a14 b a10 b be3 b ce1 b vss r/w b a6 b a2 b vss dq0 b vss dq2 b t u vss dq35 a pl/ft b col b a15 b a11 b a7 b be0 b vdd oe b rpt b a3b a0 b vdd opt b dq0 a dq1 a u 1234567891011121314151617 as9c25256m2036l/as9c25128m2036l f - 208 top view
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 6 of 30 ? pin assignment - 208-pin pqfp note: 1. address a17 is a nc for as9c25128m2036l vss vddq b dq18 b dq18 a vss pl/ft a col a int a nc nc a17 [1] a a16 a a15 a a14 a a13 a a12 a a11 a a10 a a9 a a8 a a7 a be3 a be2 a be1 a be0 a ce1 a ceo a vdd vdd vss vss clk a oe a r/w a ads a inc a rpt a a6a a5 a a4 a a3 a a2 a a1 a a0 a vdd vdd nc opt a dq17 a dq17 b vddq b vss 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 dq19 a 1 156 dq16 a dq19 b 2 155 dq16 b dq20 a 3 154 dq15 a dq20 b 4 153 dq15 b vddq a 5 152 vss vss 6 151 vddq a dq21 a 7 150 dq14 a dq21 b 8 149 dq14 b dq22 a 9 148 dq13 a dq22 b 10 147 dq13 b vddq b 11 146 vss vss 12 145 vddq b dq23 a 13 144 dq12 a dq23 b 14 143 dq12 b dq24 a 15 142 dq11 a dq24 b 16 141 dq11 b vddq a 17 140 vss vss 18 139 vddq a dq25 a 19 138 dq10 a dq25 b 20 137 dq10 b dq26 a 21 136 dq9 a dq26 b 22 135 dq9 b vddq b 23 134 vss zz b 24 133 vddq b vdd 25 132 vdd vdd 26 131 vdd vss 27 130 vss vss 28 129 vss vddq a 29 128 zz a vss 30 127 vddq a dq27 b 31 126 dq8 b dq27 a 32 125 dq8 a dq28 b 33 124 dq7 b dq28 a 34 123 dq7 a vddq b 35 122 vss vss 36 121 vddq b dq29 b 37 120 dq6 b dq29 a 38 119 dq6 a dq30 b 39 118 dq5 b dq30 a 40 117 dq5 a vddq a 41 116 vss vss 42 115 vddq a dq31 b 43 114 dq4 b dq31 a 44 113 dq4 a dq32 b 45 112 dq3 b dq32 a 46 111 dq3 a vddq b 47 110 vss vss 48 109 vddq b dq33 b 49 108 dq2 b dq33 a 50 107 dq2 a dq34 b 51 106 dq1 b dq34 a 52 105 dq1 a 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 vss vddq a dq35 b dq35 a pl/ft b nc col b int b nc nc a17 [1] b a16 b a15 b a14 b a13 b a12 b a11 b a10 b a9 b a8 b a7 b be3 b be2 b be1 b be0 b ce1 b ce0 b vdd vdd vss vss clk b oe b r/w b ads b inc b rpt b a6 b a5 b a4 b a3 b a2 b a1 b a0 b vdd vss nc opt b dq0 a dq0 b vddq a vss as9c25256m2036l/as9c25128m2036l p - 208 top view
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 7 of 30 ? signal description notes: 1. subscript 'x' represents 'a' for port a and 'b' for port b. 2. opt x ,vddq x and vdd must be set to appropriate opera ting levels before applyi ng inputs on the i/os and controls for that port. 3. opt x = vdd (2.5v) implies that corresponding port's i/os, addresse s, clock, and controls will operate at 3.3v level and vddq x must be supplied at 3.3v. opt x = vss (0v) implies that corresponding port's i/os, addres ses, clock, and controls will operate at 2.5v level and vddq x must be supplied at 2.5v. each port can inde pendently operate on either of the vddq levels. 4. if unused jtag inputs may be left unconnected. 5. jtag is not supported in pqfp package. 6. address a17 is a nc foras9c25128m2036l signal i/o properties description notes port a port b clk a clk b iclock clock. each port has an inde pendent clock input that can be of different frequencies. all inputs except oe x and zz x are synchronous to the corresponding port?s clock and must meet setup and hol d time about the rising edge of the clock. 1 a0 a - a17 a a0 b - a17 b i sync external address. sampled on the risi ng edge of corresponding port clock 6 dq0 a - dq35 a dq0 b - dq35 b i/o sync bidirectional data pins ce0 a , ce1 a ce0 b , ce1 b i sync chip enable inputs. active low and high, re spectively. sampled on the rising edge of corresponding port clock. r/w a r/w b i sync read/write enable. drive this pin low to write to, or high to read from the memory array. be0 a - be3 a be0 b - be3 b i sync byte enable inputs. active low. asserti ng these signals enables read and write operations to the corresponding bytes of th e memory array. (refer byte control truth table) ads a ads b i sync address strobe enable.active low. loads external address onto the counter. (refer counter control truth table) inc a inc b i sync address counter increment. active low. increments the counter value. (refer counter control truth table) rpt a rpt b i sync address counter repeat. active low. reloads the counter with the previously loaded external address.(refer counter control truth table) oe a oe b i async asynchronous output enable. i/o pins are driven when the oe is low and the chip is in read mode. a high on oe tristates the i/o pins. zz a zz b i async snooze mode input. places the device in low power mode. data is retained. this pin has an internal pull-down and can be floating. pl/ft a pl/ft b istatic pipeline/flow-through select . when low, enables si ngle register flow-through mode. when high, enables double register pi peline mode. this pi n has an internal pull-up and can be left floating to operate in pipeline mode. opt a opt b istatic vddq x option. opt x selects the operating voltage levels for the i/os, addresses, clock, and controls on that port. this pi n has an internal pull-up and can be left floating to operate in 3.3v mode. 1,2,3 int a int b o sync interrupt flag. used for message passing between two ports. (refer interrupt logic truth table) co l a col b o sync collision alert flag. used to indicate collision during simultaneous memory access to the same location by both the ports (r efer collision detection truth table) vddq a vddq b ipower power to i/o bus. can be 3.3v or 2.5v depending on opt x input. 1,2,3 vdd i power power inputs (to be connected to 2.5v power supply) 2 vss i ground ground inputs (to be connected to ground supply) tck i clock (jtag) jtag test clock input. all jtag signals except trst are synchronous to this clock. 4,5 tdi i sync (jtag) jtag test data input. data on the tdi input will be shifted serially into selected registers. 4,5 tdo o sync (jtag) jtag test data output. t do transitions occur on the fa lling edge of tck. tdo is normally tristated except when the captured data is shifted out of the jtag tap. 5 tms i sync (jtag) jtag test mode select input. it cont rols the jtag tap state machine. state machine transitions occur on the rising edge of tck. 4,5 trst i async (jtag) jtag test reset input. async hronous input used to init ialize tap controller. 4,5
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 8 of 30 ? byte control truth table [1,2,3,4,5] notes: 1. l = low, h = high 2. ce0 = l, ce1 = h (chip in select mode) 3. r/w = h for a read operation, r/w = l for a write operation 4. byte 3 - dq[35:27], byte 2 - dq[26:18] , byte 1 - dq[17:9], byte 0 - dq[8:0] 5. more than one byte enable may be simu ltaneously asserted read/write control truth table [1,4] notes: 1. l = low, h = high, x = don't care 2. ce is an internal signal. ce = h implies 'chip is deselected' (ce0 = h or ce1 =l), ce = l implies 'chip is selected' (ce0 = l and ce1 =h) 3. be n refers to any one of the 4 byte controls [n= 3,2,1 or 0] and dq n refers to the corresponding byte 4. snooze de-asserted (zz=l) 5. true in flow-through mode. for pipeline mode ther e will be a 1 cycle latency [refer timing diagrams] 6. for a write command issued before the completion of a read command, oe must be high before the input data setup time and held high throughout the input data hold time. 7. all dqs are tristated on power-up 8. oe should be asserted (oe = l) (refer read timing waveform) 9. in pipeline mode the dqs are hi ghz-ed in the same cycle if r/w =l counter control truth table [1,2,5,6] notes: 1. l = low, h = high, x = don't care 2. cycle can be read, write or deselect (controlled by appropriate setting of r/w , ce0 , ce1 and be n ) 3. ads , inc , rpt are independent of all other memory controls including r/w , ce0 ,ce1 and be n (i.e counter works independent of r/w , ce0 ,ce1 and be n ) 4. the 'mirror register' used for the repeat operation is loaded with external address during every valid ads access. ?am? refers to the mirror register content. 5. clock to the counter is disabled dur ing snooze mode (true for both ports). 6. the counter and the mirror registers are not in itialized on power-up (refer counter description). be 3 be 2 be 1 be 0 clk mode h h h h l to h all bytes deselected - nop h h h l l to h read or write byte 0 h h l h l to h read or write byte 1 h l h h l to h read or write byte 2 l h h h l to h read or write byte 3 ce [2] r/w be n [3] clk operation dq n [0:8] [3,7] h x x l to h chip deselect hi-z [5,9] l x h l to h byte deselect hi-z [5,9] l l l l to h byte write din [6] l h l l to h byte read qout [5,8] clk ads [3] inc [3] rpt [3] external address previous address accessed mirror register content [4] address accessed operation l to h l x h an x an an load [4] l to h h l h x an am an + 1 increment l to h h h h x an am an hold l to h x x l x x am am repeat
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 9 of 30 ? package thermal resistance notes: 1. this parameter is sampled. capacitance [1] (t a = +25 c, f = 1.0 mhz) [2] notes: 1. sampled, not 100% tested 2. t a stands for 'ambient temperature'. 3. l = 0v; h = 3v absolute maximum ratings [1] notes: 1. stresses greater than those listed under absolute maximum rati ngs may cause permanent damage to the device. this is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational s ections of this specification is not impl ied. exposure to absolute maximum rating for extended periods may affect reliability. description conditions symbol typical units thermal resistance (junction to ambient) [1] test conditions follow standard test methods and procedures for measuring thermal impedance, per eia/jesd51 bga ja tbd c/w fpbga ja tbd c/w pqfp ja tbd c/w thermal resistance (junction to top of case) [1] jc tbd c/w parameter symbol signals test condition [3] b g a (max) f p b g a (max) p q f p (max) unit input capacitance c in address and control pins v in = l to h or h to l tbd tbd tbd pf output capacitance c out flag output pins v out = l to h or h to l tbd tbd tbd pf i/o capacitance c i/o i/o pins v i/o = l to h or h to l tbd tbd tbd pf rating parameter symbol min max unit core supply voltage relative to vss vdd -0.5 3.6 v i/o supply voltage relative to vss vddq -0.3 3.9 v input and i/o voltage relative to vss v in -0.3 vddq + 0.3 v power dissipation p d -tbdw short circuit output current i out -tbd ma storage temperature t stg -65 150 c storage temperature under bias t bias -55 125 c junction temperature t jn -tbdc
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 10 of 30 ? recommended operating temperature recommended operating conditions notes: 1. opt pin for a given port must be set to vss(0v) to operate at vddq = 2.5v levels on the i/os, addresses, clock and controls of that port. 2. opt pin for a given port must be set to vdd(2.5v) to operate at vddq = 3.3v levels on the i/os , addresses, clock and control s of that port. dc electrical characterist ics (vdd = 2.5 v 100 mv) notes: 1. outputs disabled (high-z condition). grade ambient temperature (t a ) commercial 0c to 70c industrial -40c to 85c vddq = 2.5v [1] vddq = 3.3v [2] parameter symbol min typ max min typ max unit core supply voltage vdd 2.4 2.5 2.6 2.4 2.5 2.6 v i/o supply voltage vddq 2.4 2.5 2.6 3.15 3.3 3.45 v ground vss 000000 v vddq = 2.5v vddq = 3.3v parameter symbol test conditions min max test conditions min max units input leakage current |i li | vddq = max; 0v < v in < vddq -2 vddq = max; 0v < v in < vddq -2a pl/ft and zz input leakage current |i li | vdd = max; 0v < v in < vdd -2 vdd = max; 0v < v in < vdd -2a output leakage current [1] |i lo | oe >=vih; 0v < v out < vddq -2 oe >=vih; 0v < v out < vddq -2a input high (logic 1) voltage (address, control, clock & data inputs) v ih - 1.7 vddq + 0.1v - 2 vddq + 0.15v v input high voltage (zz,opt,pl/ft ) v ih - vdd - 0.2v vdd + 0.1v - vdd - 0.2v vdd + 0.1v v input low (logic 0) voltage (address, control, clock & data inputs) v il - -0.3 0.7 - -0.3 0.8 v input low voltage (zz,opt,pl/ft ) v il - -0.3 0.2 - -0.3 0.2 v output low voltage v ol i ol = +2ma; vddq = min -0.4 i ol = +4ma; vddq = min -0.4v output high voltage v oh i oh = -2ma; vddq = min 2.0 - i oh = -4ma; vddq = min 2.4 - v
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 11 of 30 ? i dd operating conditions and maximum limits [4] (vdd = 2.5 v 100 mv) notes: 1. f=f max implies address and controls (except oe ) are cycling at maximum clock frequency using ac test conditions (refer ac test conditions). 2. f = 0 implies address and controls are static. correspo nding current numbers indicate d are true for both cmos (v in > vddq - 0.2v or v in < 0.2v) and ttl (v in > v ih or v in < v il ) level inputs. 3. ce a and ce b are internal signals (ce x = l implies ce 0 x < v il and ce1 x > v ih , ce x = h implies ce 0 x > v ih or ce1 x < v il ). 4. subscript 'x' represents 'a' for port a and 'b' for port b. 5. ?a? and ?b? are interchangeable. parameter symbol test conditions -250 -200 -166 -133 units typ max typ max typ max typ max operating current (both ports active) pipeline mode -- (pl/ft > v ih ) i cc both ports enabled (ce a = ce b = l [3] ), outputs disabled (i out = 0ma), zz a = zz b < v il , f=f max [1] tbd tbd tbd 350 tbd 300 tbd 260 ma operating current (both ports active) flow-through mode (pl/ft < v il ) tbd tbd tbd tbd tbd tbd tbd tbd ma standby current (both ports) i sb1 both ports disabled (ce a = ce b = h), zz a = zz b < v il , f=f max [1] tbd tbd tbd 105 tbd 90 tbd 80 ma standby current (one port) i sb2 one port enabled (ce a = l and ce b = h) [5] , active port's outputs disabled, zz a = zz b < v il , f=f max [1] tbd tbd tbd 265 tbd 225 tbd 190 ma full standby current (both ports) i sb3 both ports disabled (ce a = ce b = h), zz a = zz b < v il , f=0 [2] 20 25 20 25 20 25 20 25 ma full standby current (one port) i sb4 one port in snooze (zz a > v ih , zz b < v il , and ce b = l) [5] , active port's outputs disabled, f=f max [1] tbd tbd tbd 265 tbd 225 tbd 190 ma snooze mode current i zz both ports in snooze (zz a = zz b > v ih ), f=f max [1] 15 18 15 18 15 18 15 18 ma
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 12 of 30 ? ac timing characteristics [1,2,5,6] (vdd = 2.5 100mv) notes: 1. all timings are same for both ports. 2. these values are valid for either level of vddq (2.5v/3.3v) 3. a particular port will operate in pipeline output mode if pl/ft = vdd and in flow-through output mode if pl/ft = 0v. each port can independently operate in any of these modes. 4. output enable (oe ) is an asynchronous input. 5. pl/ft and opt should be treated as dc signals and s hould reach steady state be fore normal operation. 6. refer ac test conditions to view the te st conditions used for these measurements. 7. this parameter has to be taken care to avoid collision during simultaneous memory access of the same location. 8. to avoid bus contention, at a given voltage and temperature t lzc is more than t hzc (true in both pipeline and flow-through output mode). parameter symbol -250 -200 -166 -133 unit notes min. max. min. max. min. max. min. max. clock cycle time (pipeline) t cycp 4 - 5 - 6 - 7.5 - ns 3 clock high pulse width (pipeline) t chp 1.7 - 2 - 2.4 - 3 - ns 3 clock low pulse width (pipeline) t clp 1.7 - 2 - 2.4 - 3 - ns 3 cycle time (flow-through) t cycf 6.5 - 7.5 - 10 - 12 - ns 3 clock high pulse width (flow-through) t chf 1.7 - 2 - 2.4 - 3 - ns 3 clock low pulse width (flow-through) t clf 1.7 - 2 - 2.4 - 3 - ns 3 output clock access time (pipeline) t cdp - 2.8 - 3.4 - 3.6 - 4.2 ns 3 output data hold from clock high (pipeline) t ohp 1 - 1 - 1 - 1 - ns clock high to output low-z (pipeline) t lzcp 1 - 1 - 1 - 1 - ns 3,8 clock high to output high-z (pipeline) t hzcp 12.813.413.614.2ns 3,8 clock access time (flow-through) t cdf - 6.5 - 7.5 - 10 - 12 ns 3 output data hold from clock high (flow-through) t ohf 1 - 1 - 1 - 1 - ns clock high to output low-z (flow-through) t lzcf 1 - 1 - 1 - 1 - ns 3,8 clock high to output high-z (flow-through) t hzcf 12.813.413.614.2ns 3,8 output enable to data valid t oe - 2.8 - 3.4 - 3.6 - 4.2 ns 4 output enable low to output low-z t lzoe 1 - 1 - 1 - 1 - ns 4 output enable high to output high-z t hzoe 12.813.413.614.2ns 4 setup address setup to clock high t as 1.2 - 1.5 - 1.7 - 1.8 - ns chip enable setup to clock high t ces 1.2 - 1.5 - 1.7 - 1.8 - ns byte enable setup to clock high t bs 1.2 - 1.5 - 1.7 - 1.8 - ns r/w setup to clock high t ws 1.2 - 1.5 - 1.7 - 1.8 - ns input data setup to clock high t ds 1.2 - 1.5 - 1.7 1.8 - ns ads setup to clock high t adss 1.2 - 1.5 - 1.7 - 1.8 - ns inc setup to clock high t incs 1.2 - 1.5 - 1.7 - 1.8 - ns rpt setup to clock high t rpts 1.2 - 1.5 - 1.7 - 1.8 - ns hold address hold from clock high t ah 0.3 - 0.5 - 0.5 - 0.5 - ns chip enable hold from clock high t ceh 0.3 - 0.5 - 0.5 - 0.5 - ns byte enable hold from clock high t bh 0.3 - 0.5 - 0.5 - 0.5 - ns r/w hold from clock high t wh 0.3 - 0.5 - 0.5 - 0.5 - ns input data hold from clock high t dh 0.3 - 0.5 - 0.5 - 0.5 - ns ads hold from clock high t adsh 0.3 - 0.5 - 0.5 - 0.5 - ns inc hold from clock high t inch 0.3 - 0.5 - 0.5 - 0.5 - ns rpt hold from clock high t rpth 0.3 - 0.5 - 0.5 - 0.5 - ns flag interrupt flag set time t sint - 6 - 6 - 6 - 7ns interrupt flag reset time t rint - 6 - 6 - 6 - 7ns collision flag set time t scol - 2.8 - 3.4 - 3.6 - 4.2 ns collision flag reset time t rcol - 2.8 - 3.4 - 3.6 - 4.2 ns port-to-port delay clock-to-clock delay t cco 3.0 - 3.5 - 4 - 5 - ns 7
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 13 of 30 ? timing waveform of read cycle [7] notes: 1. both flow-through and pipeline output s indicated. a partic ular port is configured in flow-through mode if pl/ft for that port is driven low, and in pipeline mode if pl/ft is driven high or left unconnected. 2. parameters t cyc , t ch and t cl are different in flow-through and pipeline modes of operation (refer ac timing characteristics). 3. ce is an internal signal.ce = h implies 'chip is deselected' (ce0 = h or ce1 =l), ce = l implies 'chip is selected' (ce0 = l and ce1 =h). timings indicated for ce hold good for ce0 and ce1 4. be n refers to any one of the 4 byte controls [n= 3,2,1 or 0] and data out refers to the corresponding byte. 5. counter set in ?load? mode (ads = l,inc = x,rpt = h). 6. oe is an asynchronous input. 7. all timings are similar for both ports. 8. read with byte disabled. data is not read out.bus in high-z condition. clk ce [3] address [5] oe [6] be n [4] r/w [pipeline mode] t ceh t ces q1 a1 a2 t cyc [2] t cl t ch t as t ah t bs t bh a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 q10 read (a1) t cdp t ohp t hzcp t lzcp t hzoe t lzoe data out [1] q1 q2 q8 read (a2) dsel read [8] (a4) dsel read (a6) read (a7) read (a8) dsel read (a10) dsel read (a12) don?t care undefined t oe t ws t wh t lzoe q6 [pipeline mode] q1 q10 t cdf t ohf t hzcf t lzcf t hzoe t lzoe q1 q2 q8 t oe t lzoe q6 oe [6] [flow-through mode] [flow-through mode] data out [1] q12
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 14 of 30 ? timing wave form read/write cycle [7] notes: 1. both flow-through and pipeline inputs/outputs indicated.a pa rticular port is configured in flow-through mode if pl/ft for that port is driven low, and in pipeline mode if pl/ft is driven high or left unconnected. 2. parameters t cyc ,t ch and t cl are different in flow-through and pipeline modes of operation.(refer ac timing characteristics) 3. ce is an internal signal.ce = h implies 'chip is deselected' (ce0 = h or ce1 =l), ce = l implies 'chip is selected' (ce0 = l and ce1 =h). timings indicated for ce hold good for ce0 and ce1 4. be n refers to any one of the 4 byte controls [n= 3,2,1 or 0] and data out refers to the corresponding byte. 5. counter set in ?load? mode (ads = l,inc = x,rpt = h). 6. oe is an asynchronous input. 7. all timings are similar for both ports. 8. invalid write. memory content of the selected location may get corrupted and should be re-written before future readback. 9. write (a11) is invalid in pipeline mode and write (a8) is i nvalid in flow-through mode. memory content of the selected locat ion may get corrupted and should be re-written before future readback. clk ce [3] address [5] oe [6] be n [4] r/w data in [1] data in [1] [flow-through mode] [pipeline mode] data out [1] data out [1] t ceh t ces d3 d6 q1 q2 q1 a1 a2 t cyc [2] t cl t ch t as t ah t bs t bh t ws t wh t cdp t lzcp t cdf t lzcf t ohf t hzcf t hzoe t ds t dh t dh t ds a3 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 d8 q9 d3 d6 d11 q4 q7 q9 read (a1) read (a2) write [8] write (a3) (a5) read read read (a7) write [9] (a8) read (a9) dsel write [9] (a11) (a4) write (a6) [pipeline mode] [flow-through mode] t hzcp t hzoe don?t care undefined oe [6] [flow-through mode] [pipeline mode]
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 15 of 30 ? timing waveform of address counter [6] notes: 1. both flow-through and pipeline output s indicated. a partic ular port is configured in flow-through mode if pl/ft for that port is driven low, and in pipeline mode if pl/ft is driven high or left unconnected. 2. parameters t cyc ,t ch and t cl are different in flow-through an d pipeline modes of operation (refer ac timing characteristics). 3. ce is an internal signal. ce = h implies 'chip is deselected' (ce0 = h or ce1 =l), ce = l implies 'chip is selected' (ce0 = l and ce1 =h). timings indicated for ce hold good for ce0 and ce1. 4. these cycles indicate that counter works independent of all memory controls including r/w ,ce and be n. 5. if a hold operation is performed for a read access, the data-out is held valid for th e subsequent clock cycle also. 6. all timings are similar for both ports. clk ce [3] r/w [pipeline mode] data out [1] [flow-through mode] t ceh t ces t cyc [2] t cl t ch write ( a1 ) data out [1] incr a1 address a1 a1+1 a1+2 a1+2 a1+1 a1+2 a1+2 a2 a2+1 a2+1 a2 a1 d1 d1+1 d1+2 d1+2 q1 q1+1 q3 q4 q1 q1+1 q4 data in rpt inc ads address internal hold rept t wh t ws t as t ah t adss t adsh t incs t inch t rpts t rpth t ds t dh t hzcf t ohf t cdf t lzcf t lzcp t cdp t ohp t hzcp a2 q1+2 q1+2 don?t care undefined [4] [5] [5] load incr write write write read read read read incr incr hold load ( a2 ) dsel dsel dsel dsel rept hold incr
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 16 of 30 ? mailbox interrupts the as9c25256m2036l/as9c25128m2036l has an inbui lt mailbox logic that can be used fo r communication between the two ports. one memory location is assigned as mail box (message center) for each port. the locatio n 3fffe (hex) is assigned as the message center for port a and 3ffff (hex) for port b (ifffe and if fff for as9c25128m2036l). the port a interrupt flag (int a ) is asserted when the port b writes to memory location 3fffe (hex ) (ifffe for as9c25128m2036l). the port a clea rs the interrupt flag by reading the a ddress location 3fffe (hex) (ifffe for as9c25128m2036l). likewise, the port b interrupt flag (int b ) is asserted when the port a writes to memory location 3ffff (hex)(iffff for as9c25128m2036l) and to clear the interrupt flag (int b ), the port b must read the memory location 3ffff (iffff for as9c25128m2036l) (refer interrupt logic truth table). the interrupt flag is asserted in a flow-t hrough mode (i.e., it follow s the clock edge of the writ ing port). also, the flag is reset in a flow- through mode (i.e., it follows the clock edge of the reading port). each por t can read the other por t?s mailbox without de-asse rting the interrupt and each port can write to its own mailbox without asse rting the interrupt. if an application does not require messag e passing, int pins can be ignored. interrupt logic truth table [1,4] notes: 1. l = low, h = high, x = don't care 2. ce x is an internal signal ('x' = 'a' or 'b'). ce x = h implies 'chip is deselected' (ce0 x = h or ce1 x =l), ce x = l implies 'chip is selected' (ce0 x = l and ce1 x =h) 3. address specified here is the internal address (refer c ounter control truth table). 4. both interrupt flags are de-asserted on power-up. 5. address a17 is a nc for as9c25128m2036l, hence interrupt addresses are iffff and ifffe clk a r/w a ce a [2] a17 a -a0 a [3,5] clk b r/w b ce b [2] a17 b -a0 b [3,5] int a int b function l to h l l 3ffff l to h x x x x l asse rt port b interrupt flag l to h x x x l to h h l 3ffff x h de-assert port b interrupt flag l to h x x x l to h l l 3fffe l x assert port a interrupt flag l to h h l 3fffe l to h x x x h x de-assert port a interrupt flag
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 17 of 30 ? interrupt timing wave form [2] notes: 1. parameters t cyc ,t ch and t cl are different in flow-through and pipeline mode of operation and can be different fo r different ports (refer ac timing charact eristics). 2. chip selected (ce0 = l and ce1 =h). true for both ports. 3. address indicated is the internal ad dress used and is dependent on the address counter control inputs for that cycle. 4. 3ffff (iffff for as9c25128m2036l ) is the mailbox for port b and 3fffe (ifffe for as9c25128m2036l) is the mailbox for port a. 5. ?aa? and ?ab? refer to any other valid address other than 3ffff or 3 fffe (iffff or ifffe for as9c25128m2036l). t cyc [1] t ch [1] t cl [1] clk a r/w a [2] t ws t wh t as t ah int a address a [3] clk b r/w b [2] address b [3] int b 3ffff t wh t ws t cyc [1] t ch [1] t cl [1] t sint t rint t sint t rint t ah t as 3ffff 3fffe 3ffff 3fffe 3fffe don?t care [4] [4] aa aa aa aa ab ab ab ab [5] [5] aa ab
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 18 of 30 ? collision detection three different cases of collisi ons can be listed depending on th e type of access from two ports: simultaneous read : a true dual-ported memory cell allows data to be read s imultaneously from both ports of the device. hence no data is corrupted, lost, or incorrectly output, and none of the collision alert flags is asserted. simultaneous write : when both ports are writing simultaneously to the same location, both write operations would fail. therefore, the collision flag is asserted on both ports. simultaneous read and write : when one port is writing and the other port is read ing from the same location in the memory, the data written will be valid. however, the read operation would fail and hence the re ading port's collision flag is asserted. the alert flag (col x ) is asserted on the 3rd (for both pipe-lined and flow-t hrough output mode) ri sing clock edge of the affected port following the collision, a nd remains low for one cycle. on c ontinuous collisions (one or both ports writing during each access) , the collision alert flag will be asserted and de-asserted every alternate cycle. collision detection truth table [1,2,4] notes: 1. l = low, h = high, x = don't care 2. chip selected (ce0 = l and ce1 =h). true for both ports. collision flag is not affected if any one or both ports are deselected. 3. ?match? indicates that internal addresses of both the ports are the same (refer c ounter control truth table). 4. both collision flags are de-asserted on power-up. clk a r/w a clk b r/w b port address [3] col a col b function l to h h l to h h match h h both ports reading. not a valid collision. no collision flag asserted on either port. l to h h l to h l match l h port a reading, port b writing. valid collision. collision flag asserted on port a. l to h l l to h h match h l port b reading, port a writing. valid collision. collision flag asserted on port b. l to h l l to h l match l l both ports writing. valid collision. collision flag asserted on both ports. l to h l l to h h no match h h no match. no collision flag asserted on either port.
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 19 of 30 ? collision timing waveform [2] notes: 1. parameters t cyc ,t ch and t cl are different in flow-through and pipeline mode of operation and can be different fo r different ports (refer ac timing charact eristics). 2. chip selected (ce0 = l and ce1 =h). true for both ports. 3. address indicated is the internal ad dress used and is dependent on the address counter control inputs for that cycle. 4. ?am? refers to matched address. ?aa? and ?ab? refer to any other valid address. 5. during address collision the data validity is guaranteed only if t cco is greater than the minimum specified (refer ac timing characteristics). clk a address a [3] r/w a am aa am aa aa am aa am am am am aa col a clk b address b [3] r/w b am ab am ab ab am ab am am am am ab col b t ch [1] t cyc [1] t cl [1] t ws t as t ah t ch [1] t cl [1] t cyc [1] t as t ah t ws t wh t cco t scol t rcol t scol t rcol t wh don?t care [5] [4] [4]
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 20 of 30 ? depth and width expansion as9c25256m2036l/as9c25128m2036l has two chipselect s (one active high and ot her active low) for simp le depth expansion. this permits easy upgrade from 256/128k depth to 512k /256k depth without extra logic. two such parts can also be combined to obtain an expanded width of 72 bits or wider. notes: 1. a<0:17> for as9c25256m2036l, a<0:16> for as9c25128m2036l 2. a<0:18> for as9c25256m2036l, a<0:17> for as9c25128m2036l 3. a<18> for as9c25256m2036l, a<17> for as9c25128m2036l timing waveform of multi device read [4,5,6] notes: 1. parameters t cyc , t ch and t cl are different in flow-through and pipeline mode of operation (refer ac timing characteristics). 2. a<0:17> for as9c25256m2036l, a<0:16> for as9c25128m2036l 3. a<18> for as9c25256m2036l, a<17> for as9c25128m2036l 4. refer to the above block di agram for the assumed setup. 5. one bank is assumed to have two as9c2 5256m2036l/as9c25128m2036ls combined to have an expanded width of 72 bits. two such ban ks are used for depth expansion. 6. all be n's = l, counter set in ?load? mode (ads = l, inc = x, rpt = h), oe =l. rpt inc ads oe be <0:3> r/w clk ce1 ce0 rpt inc ads oe be <0:3> r/w clk ce1 ce0 a<0:17> [1] dq<0:35> a<0:17> [1] dq<0:35> a<0:17> [1] a<0:17> [1] dq<0:35> dq<36:71> a<0:17> [1] a<0:17> [1] dq<0:35> dq<36:71> a<18> [3] a<18> [3] clock clock data address controller microprocessor bank 1 bank 0 256/128kx36 dpsram 256/128kx36 dpsram dq<0:71> a<0:18> [2] t ch t cl t cyc [1] clk r/w a[18] [3] data out [0:71] [pipeline mode] (bank 0) (bank 1) data out [0:71] a[0:17] [2] [flow-through mode] [pipeline mode] data out [0:71] (bank 0) data out [0:71] [flow-through mode] (bank 1) t as t ah t ws t wh a1 a2 a3 a4 a5 a6 a7 a8 t cdp t ohp t hzcp t lzcp q1 q2 q4 q3 t cdp t ohp t hzcp t lzcp t cdf t ohf t hzcf t lzcf q4 q1 q2 q3 t cdf t ohf t hzcf q5 q6 read (bank0) (bank0) read (bank1) read read read read (bank0) (bank1) (bank1) read (bank0) t lzcf q5 q6 don?t care undefined
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 21 of 30 ? snooze mode snooze mode is a low-current, power-down mode in which the corresponding port is deselected and its current is reduced to a very low value. both ports are equipped with independent sn ooze inputs (zz). during snooze mode, all inputs of the port except zz are internally disabled and all its outputs go to high-z. zz is an asynchronous, active high input that causes the selected port to enter snooze mode. if both ports go into snooze mode, the device is deselected and current is reduced to i zz . when zz a and zz b become a logic high, i zz is guaranteed after the setup time t sczz is met. any read or write operation pending when the port enters s nooze mode is not guaranteed to complete. therefore, snooze mode must not be initiated until valid pending oper ations are completed. similarly during the time t rczz , when the port is transitioning out of snooze mode, only deselect cycles should be given. snooze mode electrical characteristics snooze mode timing waveform [1,3] notes: 1. during snooze mode, all dynamic inputs are disabled (except jtag inputs). during jtag operations, zz x must be held low in order to capture the parallel inputs of the bound- ary scan register. all static inputs (i.e. pl/ft x ,opt x ) and zz x themselves are not affected during snooze mode. 2. ce is an internal signal. ce = h implies 'chip is deselected' (ce0 = h or ce1 =l), ce = l implies 'chip is selected' (ce0 = l and ce1 =h). 3. all timings are same for port a and port b. 4. minimum of two deselect cycles should be given before asserting snooze and minimum of two deselect cycles should be given af ter de-asserting snooze to guarantee data integrity. 5. select cycles indicated before and after snooze are read cycles. they can also be write cycles. description conditions symbol min max units snooze mode current zz a = zz b >= v ih i zz 15 18 ma zz active to input ignored t sczz - 2 cycle zz inactive to input sampled t rczz 2 - cycle zz active to ente r snooze current t sizz - 2 cycle zz inactive to exit snooze current t rizz 0 - cycle clk t ch t cyc t cl don?t care t ceh t ces t sizz t rizz izz t sczz zz setup cycles t rczz zz recovery cycles high-z ce [2,4] zz i supply outputs [5] inputs (except zz) (qout) t hzc t lzc undefined va l i d valid
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 22 of 30 ? ac test conditions input pulse level (address and controls) gnd to 3.0v/gnd to 2.4v input pulse levels (i/os) gnd to 3.0v/gnd to 2.4v input rise/fall times 2v/ns input timing reference levels 1.5v/1.25v output reference levels 1.5v/1.25v output load (for t lzc , t hzc , t lzoe , t hzoe )fig. c output load (for all ot her measurements) fig. b thevenin equivalent: gnd 10% 90% 90% 10% +3.0/2.4 v figure a: input waveform d out z 0 = 50 ? 50 ? v l = 1.5/1.25 v +3.3/2.5 v; 5 pf* gnd figure b: output load (a) figure c: output load (b) * including scope and jig capacitance 10 pf* 319 ? / 1667 ? 353 ? / 1538 ?
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 23 of 30 ? ieee 1149.1 serial boundary scan (jtag) the sram incorporates a serial boundary scan test access port (tap). all jtag pins operate using jede c standard 2.5v i/o logic levels. in order to operate the device without us ing the jtag feature, all jtag pins may be left unconnected. on pow er-up, the device w ill start in a reset state which will not inte rfere with normal device operation. tap controller block diagram note: 1. x = 149 jtag timing waveform selection circuitry selection circuitry 31 30 29 0 1 2 . . . boundary scan register 1 identification register bypass register instruction register x [1] 0 1 2 0 1 2 0 .. . .. tdi tms tck tdo tap controller 3 test clk trst t jcyc tck tms/tdi tdo t jch t jcl t jis t jih t joh t jcd t jrs t jrr don?t care undefined
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 24 of 30 ? tap ac electrical characteristics [2] notes: 1. t jcs and t jch refer to the setup and hold time requirements of latching data from the boundary scan register. 2. test conditions are specified using the load in the figure tap ac output load equivalent. tap ac test conditions & output load equivalent tap dc electrical charac teristics and operating conditions (vdd=2.5v 100 mv) description symbol min max units clock clock cycle time t jcyc 100 - ns clock frequency f jtag - 10 mhz clock high time t jch 40 - ns clock low time t jcl 40 - ns output times tck low to tdo unknown t joh 0 - ns tck low to tdo valid t jcd -20ns setup times tms/tdi setup t jis 10 - ns capture setup t jcs [1] 10 - ns hold times tms/tdi hold t jih 10 - ns capture hold t jch [1] 10 - ns reset times jtag reset t jrs 50 - ns jtag reset recovery t jrr 50 - ns description symbol conditions min max units input high (logic 1) voltage v ih 1.7 vdd + 0.3 v input low (logic 0) voltage v il -0.3 0.7 v input leakage current |i li | vdd = max; 0v < v in < vdd 0 10 a output leakage current |i lo | outputs disabled, 0v < v out < vddq (dq x )0 10a output low voltage v olc i olc = 100a 0.2 v output low voltage v olt i olt = 2ma 0.7 v output high voltage v ohc i ohc = -100a 2.1 v output high voltage v oht i oht = -2ma 1.7 v tdo 50 ? z o =50 ? 1.25v 20pf input pulse levels vss to 2.5v input rise and fall times 1v/ns input timing reference levels 1.25v output reference levels 1.25v test load termination supply voltage 1.25v
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 25 of 30 ? identification register definitions scan register sizes instruction codes instruction field value description revision number (31:28) tbd version number device depth (27:12) tbd alsc part number jedec id code (11:1) 00001010010 manufacturer identity code (alsc) indicator bit (0) 1 id regi ster presence indicator register name bit size instruction register (ir) 4 bypass register (byr) 1 identification register (idr) 32 boundary scan register (bsr) 150 instruction code description selected reg extest 0000 forces contents of the bsr onto the device outputs. bsr sample/preload 0001 samples the i/o ring contents. preloads test data into the bsr. bsr idcode 0010 loads the idr with the vend or id code and places the register between tdi and tdo. idr clamp 0011 forces contents of the bsr onto the device outputs. byr highz 0100 forces all device 2-state and 3-state outputs to high-z. byr reserved 0101 - 1110 reserved states. do not use. byr bypass 1111 places the byr between tdi and tdo. byr
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 26 of 30 ? package diagram: 256-ball ball grid array (bga) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo oooooooooooooooo a1 corner index all measurements are in mm. min typ max a 1.00 b 16.95 17.00 17.05 c 15.00 d 16.95 17.00 17.05 e 15.00 f 0.36 g 0.35 0.50 h 1.60 i 0.40 0.50 0.60 j 0.70 0.35 ~ 0.50 1.60 max 0.36 0.70 0.35 z top view bottom view side view a b c a e d d f h g 0.20 z + 12345678910111213141516 + + + + + + a b c d e f g h j k l m n p r t / 0.500.10 (256x) ? 0.15 ? 0.25 z z xy detail of solder ball i m m o o o o a b c d e f g h j k l m n p r t j
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 27 of 30 ? package diagram: 208-ball fine pitch ball grid array (fpbga) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo oooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo ooooooooooooooooo / 0.450.05 (208x) ? 0.08 ? 0.15 a1 corner index all measurements are in mm. min typ max a 0.80 b 14.95 15.00 15.05 c 12.80 d 14.95 15.00 15.05 e 12.80 f 0.26 g 0.25 0.40 h 1.40 i 0.40 0.45 0.50 j 0.70 z z xy 0.25 ~ 0.40 1.40 max 0.26 0.70 0.20 z top view bottom view side view detail of solder ball a b c a e d d f h g i 0.15 z m m + 1234567891011121314151617 o ++ + + + + 17 a b c d e f g h j k l m n p r t u o o o a b c d e f g h j k l m n p r t u j
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 28 of 30 ? package diagram: 208-pin plastic quad flat pack (pqfp) pqfp min typ max a1 0.25 a2 3.20 3.32 3.60 b 0.17 0.20 0.27 c 0.11 0.15 0.23 d 28.00 nominal e 28.00 nominal e 0.50 nominal hd 31.20 nominal he 31.20 nominal l 0.73 0.88 1.03 l1 1.60 nominal 0 7 dimensions in millimeters a1 a2 l1 l c he e hd d b e
as9c25256m2036l as9c25128m2036l 9/30/04, v.1.3 alliance semiconductor p. 29 of 30 ? ordering information part numbering guide 1. alliance semiconductor prefix 2. speciality memory 3. operating voltage: 25 - vdd = 2.5v 4. device depth: 256 - 256k; 128 - 128k 5. m20 - multiport - 2port, ssram, dcd 6. i/o width - 36 7. i/o interface: l - lvttl 8. clock speed (mhz) 9. package type: p - pqfp, b - bga, f - fpbga 10. operating temperature: c - commercial (0 0 c to 70 0 c); i -industrial (-40 0 c to 85 0 c) package & width -250 -200 -166 -133 256k x 36 bga x 36 as9c25256m2036l - 250bc as9c25256m2036l - 200bc as9c25256m2036l -166bc as9c25256m2036l - 133bc as9c25256m2036l - 250bi as9c25256m2036l - 200bi as9c25256m2036l - 166bi as9c25256m2036l - 133bi fpbga x 36 as9c25256m2036l - 250fc as9c25256m2036l - 200fc as9c25256m2036l - 166fc as9c25256m2036l - 133fc as9c25256m2036l - 250fi as9c25256m2036l - 200fi as9c25256m2036l - 166fi as9c25256m2036l - 133fi pqfp x 36 as9c25256m2036l - 250pc as9c25256m2036l - 200pc as9c25256m2036l - 166pc as9c25256m2036l - 133pc as9c25256m2036l - 250pi as9c25256m2036l - 200pi as9c25256m2036l - 166pi as9c25256m2036l - 133pi 128k x 36 bga x 36 as9c25128m2036l - 250bc as9c25128m2036l - 200bc as9c25128m2036l -166bc as9c25128m2036l - 133bc as9c25128m2036l - 250bi as9c25128m2036l - 200bi as9c25128m2036l - 166bi as9c25128m2036l - 133bi fpbga x 36 as9c25128m2036l - 250fc as9c25128m2036l - 200fc as9c25128m2036l - 166fc as9c25128m2036l - 133fc as9c25128m2036l - 250fi as9c25128m2036l - 200fi as9c25128m2036l - 166fi as9c25128m2036l - 133fi pqfp x 36 as9c25128m2036l - 250pc as9c25128m2036l - 200pc as9c25128m2036l - 166pc as9c25128m2036l - 133pc as9c25128m2036l - 250pi as9c25128m2036l - 200pi as9c25128m2036l - 166pi as9c25128m2036l - 133pi as 9c 25 256 m20 36 l -xxx p or b or f c/i 1234567 8 9 10
alliance semiconductor corporation 2575, augustine drive, santa clara, ca 95054 tel: 408 - 855 - 4900 fax: 408 - 855 - 4999 www.alsc.com copyright ? alliance semiconductor all rights reserved preliminary information part number: as9c25256m2036l as9c25128m2036l document version: v.1.3 ? copyright 2003 alliance semiconductor corp oration. all rights reserved. our three-po int logo, our name and intelliwatt are tr ademarks or registered trademarks of alliance. all other brand and product names may be the trademarks of th eir respective companies. alliance reserve s the right to make changes to this document and its products at any time without notice. alliance assumes no respon sibility for any errors that ma y appear in this document. the data contained herein represents alliance's best data and/or estimates at the time of issuance. alliance reserves the right to change or correct this data at any time, without notice. if the product desc ribed herein is under development, signifi cant changes to these specifications are possible. the information in this product data sheet is intended to be general descriptive information for potential customer s and users, and is not intende d to operate as, or provide, any guarantee or warrantee to any user or cust omer. alliance does not assume any responsib ility or liability arising out of the app lication or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringe ment of any intellectual property rights, except as express ag reed to in alliance's terms and conditions of sale (which are available from alliance). all sa les of alliance products are made exclusively according to allian ce's terms and conditions of sale. the purchase of products from allianc e does not convey a license under any pate nt rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of alliance or third parties. allianc e does not authorize its products for use as critical compone nts in life-supporting systems where a malfunction or failure may reasonably be expected to resu lt in significant injury to the user, and the inclusion of all iance products in such life- supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify alliance against all clai ms arising from such use. as9c25256m2036l as9c25128m2036l ? ?


▲Up To Search▲   

 
Price & Availability of AS9C25128M2036L-250PI

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X